Intermodal Industry Overview

- History of Containers and Intermodal Industry
- Intermodal Operations
- Chassis and Chassis Pools

TRAC Intermodal Investor Relations
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Containers and Intermodal Industry</td>
<td>4</td>
</tr>
<tr>
<td>Intermodal Operations</td>
<td>13</td>
</tr>
<tr>
<td>Chassis and Chassis Pools</td>
<td>36</td>
</tr>
</tbody>
</table>
What is Intermodal?

• **Intermodal freight transportation** involves the movement of goods using multiple modes of transportation - rail, ship, and truck. Freight is loaded in an intermodal container which enables movement across the various modes, reduces cargo handling, improves security and reduces freight damage and loss.
Overview

HISTORY OF CONTAINERS AND INTERMODAL INDUSTRY
Containerization Changed the Intermodal Industry

• **Intermodal Timeline:**
 – By Hand - beginning of time
 – Pallets
 • started in 1940’s during the war to move cargo more quickly with less handlers required
 – Containerization: **Marine**
 • First container ship built in 1955, 58 containers plus regular cargo
 • Marine containers became standard in U.S. in 1960s (Malcom McLean 1956 – Sea Land, SS Ideal X, 800 TEUs)
 • Different sizes in use, McLean used 35’
 • 20/40/45 standardized sizes for Marine
Containerization Changed the Intermodal Industry

- Intermodal Timeline:
 - **Containerization: Domestic Railroads**
 - Earliest containers were for bulk – coal, sand, grains, etc. – 1800’s
 - Piggy backing was introduced in the early 1950’s where regular trailers were placed directly on train flat cars.
 - Southern Pacific Railroad introduced the first double-stack intermodal cars in 1977
 - Railroads double-stacking fully introduced by 1984
 - 48/53 for US Domestic, Introduced in 1989 - 60% more capacity than standard 40’
 - Double-stack rail transport is approximately 70% of the United States' intermodal shipments, it transports more than one million containers per year
Containerization Changed the Intermodal Industry

• Intermodal Timeline:
 – Containerization
 • 17 million intermodal containers in the world of varying types according to the World Shipping Council at 2010
 • 90% of non-bulk cargo worldwide is transported by container
 • Typical container has doors fitted at one end, and is constructed of corrugated weathering steel
 • Built to be stacked up to seven units high
 • Average life of 10 to 14 years depending on use
 • Cost $3k to $5k
Standardization / Variations of Containers

- Containers vary but the pin systems remain constant on ships and trains
 - Marine Standard 20’/40’/45’
 - Domestic Standard 53’
 - Other Types:
 - Tanker
 - Refrigerated
 - Bulk for minerals, heavy machinery
Container Locking / Securing System

• A **twist-lock** and **corner casting** together form a standardized rotating connector for securing to:
 - Container Ships
 - Chassis
 - Railcars
 - Container cranes
• Double-stack rail transport is approximately 70% of the United States' intermodal domestic shipments
Container Ships Have Grown

- First container ships were converted WWII surplus tankers – 1951 / 58 containers
- Modern container ships can carry up to 16,020 twenty-foot equivalent units (TEU)
- Maersk Triple E class "Economy of scale, Energy efficient and Environmentally improved", ¼ mile long

Early container ship (1956-)
500 – 800 TEU, 117x17x9m

Fully Cellular (1970-)
1,000 – 2,500 TEU, 215x20x10m

Panamax (1980-)
3,000 – 3,400 TEU, 260x32x12.5m

Panamax Max (1985-)
3,400 – 4,500 TEU, 290x32x12.5m

Post Panamax (1988-)
4,000 – 5,000 TEU, 285x40x13m

Post Panamax Plus (2000-)
6,000 – 8,000 TEU, 300x43x14.5m

New Panamax (2014-)
12,500 TEU, 366x49x15.2m

Triple E (2013-)
18,000 TEU, 460x38m
Container Ship Size has Limits

- Most U.S. ports have bridge or depth limitations
- Panama canal has a TEU limit of approximately 5,000 TEUs¹

¹ The $5.3B Panama Canal expansion program will be done in 2015, allowing ship TEU limits to rise to 13,000.
Overview

INTERMODAL OPERATIONS
Intermodal Transportation

- Factory
- Ship
- Train
- Truck
- Distr Ctr
- Store
- Re-Order
Example of Freight Route – Asia to Eastern U.S.
Steamship Lines Operate Regularly Scheduled Routes

- Top US ports – LA/LB, Newark, Gulf, S. Atlantic, Pacific / No. Cal
Deliver Containers to Dock Side
Ports – Multiple Births – Some Specific to a SSL
Port – Some congested with limited space

Hanjin Ship at Port LA
Gantry Cranes Load / Unload Containers
Gantry Crane Loading Containers into Ship
Loading Container on ‘Port Chassis’
Stacking Containers
Ports – Stacked Containers (Grounded Operating Model)
Ports – Wheeled Containers (Wheeled Operating Model)
Truckers Check-In to Port
Truckers Exiting Port Terminals
Long Beach Gate Operations
Ports and Rails are Secure Facilities / Customs
Rail Heads at Marine Ports
Rail Terminals

- Over 2000 rail terminal, 10% handle 90% of intermodal freight
- Most intermodal terminals are clustered around major ports
Rail Modes – Piggyback, Trailer on Flat Car (TOFC) and Double Stack in Background
Transloading – Marine or Bulk to Rail

• Transloading is the process of transferring a shipment from one mode of transportation to another
• 3 x 40’ Marine = 2 x 53’ Domestic Containers
• Shippers increase / decreasing Transloading depending on shipping costs on rails and truck travel distances.
• 46% Domestic Containers in Southern California Leaving by Rail were Transloaded¹, up from 33% a decade ago.

¹ Alameda Corridor Transportation Authority, April 2013
Container Delivered to Customer
Overview

CHASSIS AND CHASSIS POOLS
Chassis in North America

• The North American chassis market is unique versus the rest of the world. Chassis have historically been provided by steamship lines.
 – Origins of this difference: Sea-Land started the container business and needed to compete with truckers who provided a trailer as part of their service.
 – Container and chassis became a package in competing with trucker’s trailer.
 – Chassis have an investment, storage, repair and logistic element that steamship lines no longer wanted to manage.
 – All steamship lines are expected to exit the chassis provisioning business by 2016.
Chassis in North America

• **Key Drivers of Chassis Usage**
 – Import / export volumes
 – Type of Port: wheeled containers or stacked containers
 – Type of Rail Ops: mostly wheeled
 – Warehouse operations: shippers use ‘drop & pick’ or a ‘live’ upload model
 – Wait time and ‘turn times’ for chassis are approximately 6 to 7 days
 – Average time on the ‘street’ / on-hire is five days

• **Owners of Chassis**
 – Steamship lines exiting ownership
 – Pool and leasing companies – TRAC, Flexi, DCLI, banks
 – Railroads and Truckers – prefer not to own chassis

• **Operators of Chassis**
 – Truckers, Railroads, Ports, Shippers
 – Pool Managers – TRAC, Flexi, CCM
Chassis Types for Containers

- 20' x Chassis
- 40' x Gooseneck Chassis
- 40' - 45' - 48' x Adjustable Chassis
- 45' - 53' Adjustable Chassis
- 53' x Domestic Chassis
- Tri-Axle Chassis
Chassis at Ports – location depends on port
Chassis Pools – On Terminal or Off
Chassis Service Depots

• **Chassis Inspections**
 • Truckers before checking out a chassis
 • Pool operators / staff

• **Chassis Repairs**
 • At depots which are usually offsite but near a port or rail terminal
 • $600-$800 annual chassis repair in the industry for inland operations
 • Higher costs at port locations
 • Largest repair costs
 • Tires
 • Lights
 • Brakes
Chassis Pools

• Efficient and effective
 – Higher asset utilization
 – Centralize repairs
 – Ease of pick-up & return

• Provide chassis to truckers on a per diem basis.
 – Check out – then load container
 – Check in – remove container and return chassis
 – Billing is usually pool gate to gate
Port Newark – Chassis Pool on terminal
Stacking Chassis for Storage
Chassis Manufactured

- Chassis Manufactured
 - Limited new chassis being manufactured
 - No Marine, over supply, steamship lines trading
 - Some Domestic, domestic intermodal is growing
 - Chassis manufacturers are mostly in U.S., Mexico and China
Chassis are Remanufactured

- Chassis Re-Manufactured
 - At end of useful life
 - Use existing axles
Remanufactured – Marine Chassis
Remanufactured – Domestic Chassis
APPENDIX
Biggest Shipping Companies

<table>
<thead>
<tr>
<th>Company</th>
<th>TEU capacity</th>
<th>Number of ships</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.P. Moller-Maersk Group</td>
<td>2,632,681</td>
<td>668</td>
</tr>
<tr>
<td>Mediterranean Shipping Company</td>
<td>2,221,631</td>
<td>488</td>
</tr>
<tr>
<td>CMA CGM</td>
<td>1,319,722</td>
<td>390</td>
</tr>
<tr>
<td>COSCO</td>
<td>699,905</td>
<td>154</td>
</tr>
<tr>
<td>Hapag-Lloyd</td>
<td>650,249</td>
<td>149</td>
</tr>
<tr>
<td>Evergreen Marine Corporation</td>
<td>645,693</td>
<td>172</td>
</tr>
<tr>
<td>American President Lines</td>
<td>616,456</td>
<td>139</td>
</tr>
<tr>
<td>CSCL</td>
<td>563,091</td>
<td>150</td>
</tr>
<tr>
<td>Hanjin Shipping</td>
<td>541,378</td>
<td>107</td>
</tr>
<tr>
<td>MOL</td>
<td>473,446</td>
<td>108</td>
</tr>
<tr>
<td>Orient Overseas Container Line</td>
<td>419,593</td>
<td>90</td>
</tr>
<tr>
<td>NYK Line</td>
<td>416,321</td>
<td>104</td>
</tr>
<tr>
<td>Hamburg Süd</td>
<td>412,709</td>
<td>104</td>
</tr>
<tr>
<td>K Line</td>
<td>358,978</td>
<td>80</td>
</tr>
<tr>
<td>Yang Ming Marine Transport Corporation</td>
<td>347,456</td>
<td>82</td>
</tr>
<tr>
<td>Hyundai Merchant Marine</td>
<td>328,716</td>
<td>64</td>
</tr>
<tr>
<td>Zim Integrated Shipping Services</td>
<td>321,213</td>
<td>88</td>
</tr>
<tr>
<td>UASC</td>
<td>291,282</td>
<td>50</td>
</tr>
<tr>
<td>Pacific International Lines</td>
<td>288,079</td>
<td>143</td>
</tr>
<tr>
<td>CSAV</td>
<td>279,549</td>
<td>64</td>
</tr>
</tbody>
</table>
Intermodal Types

Direct Road Movement to Port

Intermodal/Export

Intermodal

Intermodal/Domestic
Marine Container - Standards

- **40’ Shipping Container**
 - **External Dimensions**

<table>
<thead>
<tr>
<th>Container Length (feet)</th>
<th>Container Width (feet)</th>
<th>Container Height (feet)</th>
<th>Inside Capacity (cubic feet)</th>
<th>Floor Area (sq feet)</th>
<th>Container Weight (tons)</th>
<th>Door Width (feet)</th>
<th>Door Height (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40’</td>
<td>8’0”</td>
<td>8’6”</td>
<td>2,360</td>
<td>305</td>
<td>4</td>
<td>7’6”</td>
<td>7’5”</td>
</tr>
</tbody>
</table>

- **Internal Dimensions**

<table>
<thead>
<tr>
<th>Container Length (feet)</th>
<th>Container Width (feet)</th>
<th>Container Height (feet)</th>
<th>Inside Capacity (cubic feet)</th>
<th>Floor Area (sq feet)</th>
<th>Container Weight (tons)</th>
<th>Door Width (feet)</th>
<th>Door Height (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39’4”</td>
<td>7’7”</td>
<td>7’9”</td>
<td>2,360</td>
<td>305</td>
<td>4</td>
<td>7’6”</td>
<td>7’5”</td>
</tr>
</tbody>
</table>
First Container Ship

- 1955
- Clifford J Rodgers
Standardization of Containers

• The International Convention for Safe Containers is a 1972 regulation by the Inter-governmental Maritime Consultative Organization on the safe handling and transport of containers. It decrees that every container travelling internationally is supplied with a "CSC-Plate".

• Container identification system is an ISO standard (ISO 6346), used to manage the movement and tracking of shipping containers.
Container / Chassis Regulations

Container and chassis are covered by laws, regulations, conventions and standards on both an international and national basis. Many of the international conventions have been established under the umbrella of the United Nations and its sponsored organizations. National laws and regulations have been developed to apply the international conventions and national requirements.

- **Customs Convention on Containers, 1972**
 - Entered into Force: December 6, 1975
 - Oversight: World Customs Organization (WCO)
 - Synopsis: Recognizes containers as Instruments of International Traffic (IIT) and establishes framework for containers to be used in international transportation.

- **TIR Convention, 1975**
 - Oversight: UNECE
 - Synopsis: Establishes framework for International transport by road

- **ISO Standards**
 - The International Organization for Standardization's (ISO) International Standards for freight containers and chassis have allowed "the box" to become the backbone of global supply chains. To date, over 30 International Standards exist in this domain. They cover a wide variety of aspects of different types of freight containers that include air/surface/(intermodal) containers, containers on board vessels, tank containers, platform and platform-based containers.

- **Roadability Regulations, effective 2009**
 - Oversight: US Federal Motor Carrier Safety Administration
 - Synopsis: Establishes regulatory requirements for safe operation, inspection, repair and maintenance of intermodal chassis in the United States

- **U.S. Safe Port Act of 2006**
 - Oversight: US Department of Homeland Security
 - Synopsis: Establishes certain regulatory security requirements for the operation of intermodal containers in the United States
Container Locking / Securing System

- Locking systems on Ships
 - Cell guides / racks
 - Container guides, locating cones, and anti-rack spacers to lock the containers together
 - Container Locking / Securing System
Types of Container Lift Systems

• Reach Stackers
 – used for handling intermodal cargo containers in small terminals or a medium-sized ports

• Forklifts
 – Multi purposed, versatile

• Gantry Cranes
 – Marine port terminals
Containers Stacked on Ship / Secured
Container End Of Life

- Storage
- Offices
- Homes
- Scrap